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Preface

Most book readers are likely to concur with the idea that the least read
portion of any book is the preface. With that in mind, and the fact that
the reader has indeed taken the trouble to read up to this sentence, we prom-
ise to leave no stone unturned to make this preface as lively and entertain-
ing as possible. For your reading pleasure, here is a nice story with a picture
thrown in for good measure. Enjoy!

Once upon a time, there were six blind men. The blind men wished to
know what an elephant looked like. They took a trip to the forest and with
the help of their guide found a tame elephant. The first blind man walked
into the broadside of the elephant and bumped his head. He declared that
the elephant was like a wall. The second one grabbed the elephant’s tusk and
said it felt like a spear. The next blind man felt the trunk of the elephant and
was sure that elephants were similar to snakes. The fourth blind man hugged
the elephant’s leg and declared the elephant was like a tree. The next one
caught the ear and said this is definitely like a fan. The last blind man felt the
tail and said this sure feels like a rope. Thus the six blind men all perceived
one aspect of the elephant and were each right in their own way, but none
of them knew what the whole elephant really looked like.
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Oftentimes, the market poses itself as the elephant. There are people
who say that predicting the market is like predicting the weather, because
you can do well in the short term, but where the market will be in the long
run is anybody’s guess. We have also heard from others that predicting the
market short term is a sure way to burn your fingers. “Invest for the long
haul” is their mantra. Some will assert that the markets are efficient, and yet
some others would tell you that it is possible to make extraordinary returns.
While some swear by technical analysis, there are some others, the so-called
fundamentalists, who staunchly claim it to be a voodoo science. Multiple
valuation models for equities like the dividend discount model, relative val-
uation models, and the Merton model (treating equity as an option on firm
value) all exist side by side, each being relevant at different times for dif-
ferent stocks. Deep theories from various disciplines like physics, statistics,
control theory, graph theory, game theory, signal processing, probability,
and geometry have all been applied to explain different aspects of market
behavior.

It seems as if the market is willing to accommodate a wide range of
sometimes opposing belief systems. If we are to make any sense of this smor-
gasbord of opinions on the market, we would be well advised to draw com-
fort from the story of the six blind men and the elephant. Under these
circumstances, if the reader goes away with a few more perspectives on the
market elephant, the author would consider his job well done.
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Introduction

We start at the very beginning (a very good place to start). We begin with
the CAPM model.

THE CAPM MODEL

CAPM is an acronym for the Capital Asset Pricing Model. It was originally
proposed by William T. Sharpe. The impact that the model has made in the
area of finance is readily evident in the prevalent use of the word beta. In
contemporary finance vernacular, beta is not just a nondescript Greek let-
ter, but its use carries with it all the import and implications of its CAPM
definition.

Along with the idea of beta, CAPM also served to formalize the notion
of a market portfolio. A market portfolio in CAPM terms is a portfolio of
assets that acts as a proxy for the market. Although practical versions of
market portfolios in the form of market averages were already prevalent at
the time the theory was proposed, CAPM definitely served to underscore the
significance of these market averages.

Armed with the twin ideas of market portfolio and beta, CAPM at-
tempts to explain asset returns as an aggregate sum of component returns.
In other words, the return on an asset in the CAPM framework can be sep-
arated into two components. One is the market or systematic component,
and the other is the residual or nonsystematic component. More precisely, if
7, is the return on the asset, 7,, is the return on the market portfolio, and the
beta of the asset is denoted as f3, the formula showing the relationship that
achieves the separation of the returns is given as

r, = Pr, +9, (1.1)

Equation 1.1 is also often referred to as the security market line (SML). Note
that in the formula, Br,, is the market or systematic component of the return.
B serves as a leverage number of the asset return over the market return. For
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instance, if the beta of the asset happens to be 3.0 and the market moves
1 percent, the systematic component of the asset return is now 3.0 percent.
This idea is readily apparent when the SML is viewed in geometrical terms
in Figure 1.1. It may also be deduced from the figure that f is indeed the
slope of the SML.

6, in the CAPM equation is the residual component or residual return
on the portfolio. It is the portion of the asset return that is not explainable
by the market return. The consensus expectation on the residual component
is assumed to be zero.

Having established the separation of asset returns into two components,
CAPM then proceeds to elaborate on a key assumption made with respect to
the relationship between them. The assertion of the model is that the mar-
ket component and residual component are uncorrelated. Now, many a
scholarly discussion on the import of these assumptions has been conducted
and a lot of ink used up on the significance of the CAPM model since its in-
troduction. Summaries of those discussions may be found in the references
provided at the end of the chapter. However, for our purposes, the preced-
ing introduction explaining the notion of beta and its role in the determina-
tion of asset returns will suffice.

Given that knowledge of the beta of an asset is greatly valuable in the
CAPM context, let us discuss briefly how we can go about estimating its
value. Notice that beta is actually the slope of the SML. Therefore, beta may
be estimated as the slope of the regression line between market returns and
the asset returns. Applying the standard regression formula for the estima-
tion of the slope we have

il wy|

Asset Return

v

rm
Market Return

FIGURE 1.1 The Security Market Line.
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B cov(rprm) (1.2)
B var(r,,) ’

that is, beta is the covariance between the asset and market returns divided
by the variance of the market returns.

To see the typical range of values that the beta of an asset is likely to as-
sume in practice, we remind ourselves of an oft-quoted adage about the
markets, “A rising tide raises all boats.” The statement indicates that when
the market goes up, we can typically expect the price of all securities to go
up with it. Thus, a positive return for the market usually implies a positive
return for the asset, that is, the sum of the market component and the resid-
ual component is positive. If the residual component of the asset return is
small, as we expect it to be, then the positive return in the asset is explained
almost completely by its market component. Therefore, a positive return in
the market portfolio and the asset implies a positive market component of
the return and, by implication, a positive value for beta. Therefore, we can
expect all assets to typically have positive values for their betas.

MARKET NEUTRAL STRATEGY

Having discussed CAPM, we now have the required machinery to define
market neutral strategies: They are strategies that are neutral to market re-
turns, that is, the return from the strategy is uncorrelated with the market re-
turn. Regardless of whether the market goes up or down, in good times and
bad the market neutral strategy performs in a steady manner, and results are
typically achieved with a lower volatility. This desired outcome is achieved
by trading market neutral portfolios. Let us therefore define what we mean
by a market neutral portfolio.

In the CAPM context, market neutral portfolios may be defined as port-
folios whose beta is zero. To examine the implications, let us apply a beta
value of zero to the equation for the SML. It is easy to see that the return on
the portfolio ceases to have a market component and is completely deter-
mined by 6,, the residual component. The residual component by the CAPM
assumption happens to be uncorrelated with market returns, and the port-
folio return is therefore neutral to the market. Thus, a zero beta portfolio
qualifies as a market neutral portfolio.

In working with market neutral portfolios, the trader can now focus on
forecasting and trading the residual returns. Since the consensus expectation
or mean on the residual return is zero, it is reasonable to expect a strong
mean-reverting behavior (value oscillates back and forth about the mean
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value) of the residual time series.! This mean-reverting behavior can then be
exploited in the process of return prediction, leading to trading signals that
constitute the trading strategy.

Let us now examine how we can construct market neutral portfolios
and what we should expect by way of the composition of such portfolios.
Consider a portfolio that is composed of strictly long positions in assets. We
expect that beta of the assets to be positive. Then positive returns in the
market result in a positive return for the assets and thereby a positive return
for the portfolio. This would, of course, imply a positive beta for the port-
folio. By a similar argument it is easy to see that a portfolio composed of
strictly short positions is likely to have a negative beta. So, how do we con-
struct a zero beta portfolio, using securities with positive betas? This would
not be possible without holding both long and short positions on different
assets in the portfolio. We therefore conclude that one can typically expect
a zero beta portfolio to comprise both long and short positions. For this rea-
son, these portfolios are also called long—short portfolios. Another artifact of
long—short portfolios is that the dollar proceeds from the short sale are used
almost entirely to establish the long position, that is, the net dollar value of
holdings is close to zero. Not surprisingly, zero beta portfolios are also
sometimes referred to as dollar neutral portfolios.

Example
Let us consider two portfolios A and B, with positive betas 8, and Bz and
with returns 7, and 7,
7y =B, +6, (1.3)
1y = Byr,, + 6y
We now construct a portfolio AB, by taking a short position on 7 units of
portfolio A and a long position on one unit of portfolio B. The return on this

portfolio is given as 745 = —7.74 + r. Substituting for the values of 7, and 7y,
we have

Tap = (7B, + Bg).t,, + (=1.0, + 65) (1.4)

IThe assertion of CAPM that the expected value of residual return is zero is rather
strong. It has been discussed extensively in academic literature as to whether this pre-
diction of CAPM is indeed observable. It is therefore recommended that we explic-
itly verify the mean-reverting behavior of the spread time series. In later chapters we
will discuss methods to statistically check for mean-reverting behavior.
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Thus, the combined portfolio has an effective beta of -8, + B5. This value
becomes zero, when r = 85/8,. Thus, by a judicious choice of the value of r
in the long-short portfolio we have created a market neutral portfolio.

T AM NEI'RER LoNG NoR SHORT. T AM
PoTH BUYER AND SELLER. T GVESS IN THAT »
SENSE, T'M BoTH Lot AD SHORT. T

P NETTHER BULL N ABEAR...

PrFuL] THPE HES NoT
RUNNING  FoR oFFICE [

GOCKTAIL CORNER

In cocktail situations involving investment professionals, it is fairly
common to hear the terms long—short, market neutral, and dollar neu-
tral investing bandied about. Very often they are assumed to mean the
same thing. Actually, that need not be the case. You could be long—
short and dollar neutral but still have a nonzero beta to the market. In
which case you have a nonzero market component in the portfolio
return and therefore are not market neutral.

If you ever encountered such a situation, you could smile to your-
self. Tempting as it might be, I strongly urge that you restrain yourself.
But, of course, if you are looking to be anointed the “resident nerd,”
you could go ahead and launch into an exhaustive explanation of the
subtle differences to people with cocktails in hand not particularly
looking for a lesson in precise terminology.
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PAIRS TRADING

Pairs trading is a market neutral strategy in its most primitive form. The
market neutral portfolios are constructed using just two securities, consist-
ing of a long position in one security and a short position in the other, in a
predetermined ratio. At any given time, the portfolio is associated with a
quantity called the spread. This quantity is computed using the quoted prices
of the two securities and forms a time series. The spread is in some ways re-
lated to the residual return component of the return already discussed. Pairs
trading involves putting on positions when the spread is substantially away
from its mean value, with the expectation that the spread will revert back.
The positions are then reversed upon convergence. In this book, we will look
at two versions of pairs trading in the equity markets; namely, statistical ar-
bitrage pairs and risk arbitrage pairs.

Statistical arbitrage pairs trading is based on the idea of relative pricing.
The underlying premise in relative pricing is that stocks with similar char-
acteristics must be priced more or less the same. The spread in this case may
be thought of as the degree of mutual mispricing. The greater the spread, the
higher the magnitude of mispricing and greater the profit potential.

The strategy involves assuming a long—short position when the spread is
substantially away from the mean. This is done with the expectation that the
mispricing is likely to correct itself. The position is then reversed and prof-
its made when the spread reverts back. This brings up several questions:
How do we go about calculating the spread? How do we identify stock
pairs for which such a strategy would work? What value do we use for the
ratio in the construction of the pairs portfolio? When can we say that the
spread has substantially diverged from the mean? We will address these
questions and provide some quantitative tools to answer them.

Risk arbitrage pairs occur in the context of a merger between two com-
panies. The terms of the merger agreement establish a strict parity relation-
ship between the values of the stocks of the two firms involved. The spread
in this case is the magnitude of the deviation from the defined parity rela-
tionship. If the merger between the two companies is deemed a certainty,
then the stock prices of the two firms must satisfy the parity relationship,
and the spread between them will be zero. However, there is usually a cer-
tain level of uncertainty on the successful completion of a merger after the
announcement, because of various reasons like antitrust regulatory issues,
proxy battles, competing bidders, and the like. This uncertainty is reflected
in a nonzero value for the spread. Risk arbitrage involves taking on this un-
certainty as risk and capturing the spread value as profits. Thus, unlike the
case of statistical arbitrage pairs, which is based on valuation considerations,
risk arbitrage trade is based strictly on a parity relationship between the
prices of the two stocks.
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The typical modus operandi is as follows. Let us call the acquiring firm
the “bidder” and the acquired firm the “target.” On the eve of merger an-
nouncement, the bidder shares are sold short and the target shares are
bought. The position is then unwound on completion of the merger. The
spread on merger completion is usually lower than when it was put on. The
realized profit is the difference between the two spreads. In this book, we
discuss how the ratio is determined based on the details of the merger agree-
ment. We will develop a model for the spread dynamics that can be used to
answer questions like, “What is the market expectation on the odds of
merger completion?” We shall also demonstrate how the model may be used
for risk management. Additionally, we will focus on trade timing and pro-
vide some quantitative tools for the process.

OUTLINE

The book provides an overview of two different versions of pairs trading in
the equity markets. The first version is based on the idea of relative valua-
tion and is called statistical arbitrage pairs trading. The second involves
pairs trading that arises in the context of mergers and is called risk arbitrage.
Even though they are commonly called arbitrage strategies in the industry,
they are by no means risk-free. In this book we take an in-depth look at the
various aspects of these strategies and provide quantitative tools to assist in
their analysis.

I must also quickly point out at this juncture that the methodologies dis-
cussed in the book are not by any measure to be construed as the only way
to trade pairs because, to put it proverbially, there is more than one way to
skin a cat. We do, however, strive to present a compelling point of view at-
tempting to integrate theory and practice. The book is by no means meant
to be a guarantee for success in pairs trading. However, it provides a frame-
work and insights on applying rigorous analysis to trading pairs in the eq-
uity markets.

The book is in three parts. In the first part, we present preliminary ma-
terial on some key topics. We concede that there are books entirely devoted
to each of the topics addressed, and the coverage of the topics here is not ex-
haustive. However, the discussion sets the context for the rest of the book
and helps familiarize the reader with some important ideas. It also intro-
duces some notation and definitions. The second part is devoted to statisti-
cal arbitrage pairs, and the third part is on risk arbitrage.

The book assumes some knowledge on the part of the reader of algebra,
probability theory, and calculus. Nevertheless, we have strived to make the
material accessible and the reader could choose to pick up the background
along the way. As a refresher, the appendix at the end of this chapter lists the
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basic probability formulas that the reader can expect to encounter in the
course of reading the book.

In terms of the sequence of chapters, we highly recommend that readers
familiarize themselves with the chapters on time series and multifactor mod-
els before getting on to statistical arbitrage pairs, as those ideas and techni-
cal terms are referenced quite frequently in the course of the discussions.
Concepts from Chapter 4, on Kalman filtering, are used in Chapter 12, re-
lated to smoothing risk arbitrage spreads. Other than the preceding de-
pendencies, the rest of the material is mostly self-contained.

AUDIENCE

This book is written to appeal to a broad audience spanning students, prac-
titioners, and self-study enthusiasts. It is written in an easy reading style, first
presenting the broad ideas and concepts and subsequently delving into the
details. The idea is to provide readers with the flexibility to revisit aspects of
the details on their own timetable. To further facilitate this, a bullet sum-
mary highlighting the key points is provided at the end of every chapter. The
book could serve as a reference text for students pursuing a degree in math-
ematical finance or be used as part of an advanced course for MBA students.
Also, the topics addressed in the book would be of keen interest not only to
academicians but also to traders and quantitative analysts in hedge funds
and brokerage houses.

The background material in Part 1 provides a primer on various subjects
that are drawn on in the course of the analysis. The background material
and the analysis methodology appear as a recurring theme in strategy analy-
sis and are generally applicable to other asset classes as well. Given this and
the easy readable style of the book, we hope that this book serves as a ref-
erence for investment professionals.

SUMMARY

m The CAPM model helps separate out portfolio returns into a market
component and a residual component.

m Portfolios with a zero market component are called market neutral
portfolios.

m Market neutral strategies involve the trading of market neutral portfo-
lios, and the returns generated by such strategies are uncorrelated with
the market.

m Pairs trading is a genre of market neutral strategies in which a portfolio
has only two assets.
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m In the book, we will discuss two classes of pairs trading strategies;
namely, risk arbitrage and statistical arbitrage.

FURTHER READING MATERIAL

CAPM

Elton, Edwin J. and Martin J. Gruber. Modern Portfolio Theory and Investment
Analysis, 4th Edition. (New York: John Wiley & Sons, Inc., 1991).

Fama, Eugene F. and Kenneth R. French. “The Cross-Section of Expected Stock Re-
turns.” Journal of Finance 47, no. 2 (June 1992): 427-465.

Market Neutral Strategies

Nicholas, Joseph G. Market Neutral Investing: Long/Short Hedge Fund Strategies.
(New York: Bloomberg Press, 2000).
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APPENDIX

Below are a few formulas on random variables that we are likely to en-
counter throughout the book.

DEFINITIONS

Let X, Y, and Z be random variables. Let (x, ¥1, 21),(X25, Y25 22)5e--5(X N> Yo
zn) be N realization 3-tuples for these random variables.

m The mean or expected value of X is denoted by E[X] = p,.
®m The estimated value of the mean of a random variable is known as the
average. N

m The formula for the average is Xovg = X,

1
N 1
i=1

Variance
m The variance of X is var(X) = E[(x - ux)Z].

m The estimated value of the square root of variance is the familiar stan-

dard deviation. N

(x, — x
i=1

>

® Its value is calculated using the formula x 44, = /%

avg

Covariance

m The covariance between X and Y is denoted as
cov(X,Y) = E[(x — i)y - uy)]-

® An estimation of the covariance may be calculated using the formula
N

1
N = (xi - xavg)(yi - yavg)'

Correlation
cov(X,Y)
var(X) var(Y)

® The formula for the estimate of correlation is given as

m The correlation between X and Yis corr(X,Y) =

Z.

1 _ —
N 4 (xi xavg)(yi yavg)

(Xstddev )(Ystddev )

Il
—_
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m The correlation between any two random variables is always a value be-
tween +1 and -1.

m Every random variable is perfectly correlated with itself, that is, the cor-
relation is 1.0.

m Two random variables are said to be uncorrelated when the correlation
between them is 0.

FORMULAS

If o, B are nonrandom numbers, then the following formulas hold:

ElaX + BY] = aE[X] + BE[Y]

var(aX + B) = o var(X)

var(X + Y) = var(X) + var(Y) + 2cov(X,Y)
var(X - Y) = var(X) + var(Y) - 2cov(X,Y)
cov(aX, BY) = affcov(X,Y)

cov(X,Y + Z) = cov(X,Y) + cov(X,Z)
corr(aX, BY) = corr(X,Y)
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Time Series

OVERVIEW

A time series is a sequence of values measured over time. These values may
be derived from a fixed deterministic formula, in which case they are re-
ferred to as a deterministic time series. Alternately, the value may be ob-
tained by drawing a sample from a probability distribution, in which case
they may be termed as probabilistic or stochastic time series. In this chapter,
we will focus on stochastic time series.

Now, if the value at each instance in a stochastic time series is drawn
from a probability distribution, how is it different from repeated drawings
from a probability distribution? The added twist is that the probability dis-
tributions used for the drawings can themselves vary with time. The formal
specification prescribing ways in which the distributions could vary with
time and the discipline of analyzing stochastic time series was pioneered
and popularized by Nobert Weiner.! For this reason, the subject area is also
referred to at times as Weiner filtering.

In the early days of Weiner filtering, the ideas were in theorem form,
and to use them in practical applications one had to work through the rig-
orous mathematical definitions and theorems. Along came George Box and
Gwilym Jenkins in the early 1970s, who formulated the application of
Weiner filtering concepts into a recipe-like format. Their step-by-step pre-
scription to the process of model building not only had great intuitive appeal
but also managed to transform what was considered an esoteric science into
a robust engineering discipline. The approach could now be readily applied
to forecasting problems. The methodology gained instant popularity with
time series analysts and has become the staple by far for the analysis of sto-

"Nobert Weiner is also credited with coining the word cybernetics, the shortened
version of which is the ubiquitous cyber, which has by usage become a prefix for a
lot of terms associated with the Internet.

14
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chastic time series. Fittingly, their methodology for time series forecasting is
referred to as the Box-Jenkins approach. In this chapter, we will describe the
Box-Jenkins approach. Instead of doing this by definition, we will attempt
to do this by way of construction and examples.

We begin by introducing some basic notation. Throughout the chapter
the value of a time series at time ¢ is denoted as y,. It then follows that the gen-
eral time series is the set of values y,, £ = 0, 1, 2, 3...T. We denote this as y,.

AUTOCORRELATION

Let us begin the discussion by introducing the notion of the autocorrelation.
Given a stochastic time series, the first question one tends to ask in the
process of analysis is, “Is there a relationship between the value now and the
value observed one time step in the past?” We can choose to answer the
question by measuring the correlation between the time series values one
time interval apart. The strength of the (linear) relationship is reflected in the
correlation number. And what about the relationship of the current value to
the value two time steps in the past? What about three time steps in the past?
The question seems to repeat itself naturally for the whole range of time
steps. The answer to these questions, spanning the entire range of time steps,
could very well be the autocorrelation function.

The autocorrelation function is the plot of the correlation between val-
ues in the time series based on the time interval between them. The x-axis de-
notes the length of the time lag between the current value and the value in
the past. The y-axis value for a time lag 7, (x = 7) is the correlation between
the values in the time series 7 time units apart. This correlation is estimated
using the formula

where y is the calculated average of variable y.

The plot of the estimated correlation against time intervals forms an es-
timation of the autocorrelation function, called the correlogram. It serves as
a proxy for the autocorrelation function of the time series.

We shall see in the ensuing discussions that the autocorrelation function
serves as a signature or fingerprint for a time series and plays a key role in
characterizing various cases of the time series that we describe in the fol-
lowing sections.
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TIME SERIES MODELS

The approach we will adopt in the description of time series models is to start
with the special cases and eventually build up to the generalized version.

White Noise

The white noise is the simplest case of a probabilistic time series. It is con-
structed by drawing a value from a normal distribution at each time in-
stance. Furthermore, the parameters of the normal distribution are fixed and
do not change with time. Thus, in this case, the time series is equivalent to
drawing samples repeatedly from a probability distribution. If we denote the
value from the drawing at time ¢ as €, the value of the time series at time ¢
is then y, = ,.

Note that there is no special requirement in the definition of white noise
that the invariant distribution be a normal or Gaussian distribution. This is,
however, the most widely used version of white noise in practice and is re-
ferred to as Gaussian white noise.

A plot of a white noise series is shown in Figure 2.1a. The correlogram
for that time series is calculated as is shown in Figure 2.1b. Note that at the
lag value of zero, the correlation is unity; that is, every sample is perfectly
correlated with itself. At all the other lag values the measured correlation is
negligible. Let us see why that is. At all time steps, the values are drawn from
identical independent normal distributions. It is also a fact that the correla-
tion between independent random variables is zero; that is, they are uncor-
related. Therefore, for a white noise series, the correlation between the
values for all time intervals is zero, and this is reflected in the correlogram.
But what is the genesis of the term white noise? It has to do with the Fourier
transform of the autocorrelation function. A discussion of that is a little be-
yond the scope of this introduction, so for that we direct the reader to other
books written in the area, as noted in the reference section.

Let us now focus on the predictability of the white noise time series. The
question we ask is as follows: Does knowledge of the past realization help in
the prediction of the time series value in the next time instant? It does help
to some extent. Knowledge of the past realization helps us to estimate the
variance of the normal distribution. This enables us to arrive at some intel-
ligent conclusions about the odds of the next realization of the time series
being greater than or less than some value.

Summing up, in a white noise series, the variance of the value at each
point in the series is the variance of the normal distribution used for draw-
ing the white noise values. This distribution with a specific mean and vari-
ance is time invariant. Thus, a white noise series is a sequence of uncorrelated
random variables with constant mean and variance.
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Moving Average Process (MA)

We now generate another time series from the white noise series above. The

value v,

of this time series at time ¢ is given by the rule

Y =& + Pe (2.2)

In words, the time series value is the sum of the current white noise realiza-

tion plu

s beta? times the white noise realization one time step ago. Note that

2Beta in this connotation is a nondescript Greek symbol denoting a constant and has
no relationship to the CAPM model.
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when 8 = 0, this is the same as the white noise series. In Figure 2.2a is a plot
of a time series of this type. This specific time series was generated from the
white noise sequence in Figure 2.1 using the formula y, = €, + 0.8¢,_;. The cor-
relogram of the series is plotted in Figure 2.2b. In the correlogram, note that
there is a steep drop in the value after 7 = 1. To see why that is, let us con-
sider the time series values for the three consecutive time steps ¢, # + 1, and
t+ 2.

Vi =& + Bey (2.3)
Ves1 = €1 + BE;
yt+2 = £t+2 + ﬁ8t+1

FIGURE 2.2R MA(1) Series.

1.0
0.8 -
0.6
0.4 -
0.2~ mmm oo

Auto Correlation

~0.0 L
— I||j~‘| |

R e B i

FIGURE 2.2B  MA(1) Series ACF.
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Observe that the values one time interval apart (7 = 1) have in their terms
one common white noise realization value (albeit with different coefficients).
Between y, and y,,; the common white noise realization is g, Similarly, be-
tween y,,; and vy,,, there is g,,;. Because of this, we expect there to be some
correlation between them.

However, between y, and y,,,, values two time intervals apart (7 =2), we
have no common white noise realizations. They are independent drawings
from normal distributions and are therefore uncorrelated (correlation = 0).
Thus, after exhibiting strong correlation after one time step, the correlation
goes to zero from the next time step onward. This would explain the steep
drop in correlation after 7 = 1.

To examine the predictability of this time series, we again ask the same
question: Does knowledge of the past realization help in the prediction of
the next time series value? The answer here is a resounding yes. At time step
t we know what the white noise realization was at time step ¢ — 1. Thus our
prediction for time step ¢ would be a value that is normally distributed with
the mean, y?™! = Be, . The variance of the predicted value would be the
variance of the g, which is same as the variance of the white noise used to
construct the time series. Since these values are based on the condition that
we know the past realization of the time series, they are called the condi-
tional mean and the conditional variance of the time series. To conclude,
knowledge of the past definitely helps in the prediction of time series.

Summing up, the preceding series was constructed using a linear com-
bination (moving average) of white noise realizations. The series is therefore
called a moving average (MA) series. Also, because we used the current
value and one lagged value of the white noise series, the series qualifies as a
first-order moving average process, denoted as MA(1). This idea is easily
generalized to a series where the value is constructed using g lagged values
of white noise realizations.

Vi =&+ P&y + Bogiy +"'+ﬂqet—q (2.4)

Such a series is called the moving average series of order g or an MA(q)
series.

Autoregressive Process (AR)

In the previous example we had constructed a time series by taking a linear
combination of a finite number of past white noise realizations. In this sec-
tion we will construct the series using a linear combination of infinite past
values of the white noise realization. In practice, though, infinity is approx-
imated by taking a very large number of values. A question that immediately
pops to mind is that if we add an infinite sequence of numbers, will the
sum not go to infinity? In some instances it might go to infinity. There are,
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however, cases where the sum of an infinite sequence of numbers is actually
a finite value.? Let us denote the value of the time series at instant  as

Y, = & + OE4 + OPE, +... (2.5)

The infinite moving average representation above is called the MA(e) rep-
resentation. To simplify Equation 2.5, consider the value of the time series
at ¢t — 1. It is given as

1 =€ + OEy + OPE 3 +... 2.6
=1 1 =2 -3

Examining the two equations, note that we can write y, in terms of y,_; as
follows:

Ve=O0Y 1 + & (2.7)

In words, the value at time ¢ is alpha times the value at time 7 — 1 plus a white
noise term. Note that alpha may be viewed as the slope of the regression be-
tween two consecutive values of the time series. Since the next value in the
time series is obtained by multiplying the past value with the slope of the
regression, it is called an autoregressive (AR) series. Figure 2.3a is the plot of
the AR time series, generated using the white noise values seen in Figure 2.1.

The corresponding correlogram is shown in Figure 2.3b. Notice that the
correlation values fall off gradually with increasing lag values; that is, there
is not much of a sharp drop. To get an insight into why that is, let us apply
the same kind of reasoning as we did for the MA model. Every time step has
in it additive terms comprising all the previous white noise realizations.
Therefore, there will always be white noise realizations that are common be-
tween two values of the time series however far apart they may be. Natu-
rally, we can expect there to be some correlation between any two values in
the time series regardless of the time interval between them. It is therefore
not surprising that the correlation exhibits a slow decay.

To answer the predictability question, here, too, as in the moving aver-
age case, knowledge of the past values of the time series is helpful in pre-
dicting what the next value is likely to be. In this case we have yP™ = ay, ,.
The conditional variance of the predicted value would be the variance of the
€,, which is same as the variance of the white noise used to construct the time
series.

The one-step autoregressive series may be extended to an autoregressive
(AR) series of order p, denoted as AR(p). The value at time # is given as

3We touch upon this topic very briefly in the appendix. However, for a full-blown
discussion on stability analysis, we recommend that the reader follow up with the
references.
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Ve =&+ 01Yq + 0V +eoot OYry (2.8)

It is, however, important to bear in mind that the generalized AR series
is generated from a white noise series using linear combinations of past
realizations.

The General ARMA Process

The AR(p) and MA(q) models can be mixed to form an ARMA(p, g) model.
By extrapolation it is easy to see that the generation rule for an ARMA (p, q)
process 1s given as
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v, =y + oy, ey, ] (2.9)
+ [et +BiE,_ +BrE, ..+ quhq]

We once again underscore the main point (hoping to drive it home) by quot-
ing our constant refrain pertaining to Weiner filtering: The preceding mod-
els are all constructed using a linear combination of past values of the white
noise series. An important consequence of that fact is that the sum of two in-
dependent ARMA series is also ARMA.

The Random Walk Process

An important and special ARMA series that merits discussion is the random
walk. The random walk has been studied extensively by scientists from var-
ious disciplines. Phenomena ranging from the movement of molecules to
fluctuations of stock prices have been modeled as random walks. Let us
therefore discuss this in some detail.

A random walk is an AR(1) series with o = 1. From the definition of an
AR series given, the value of the time series at time ¢ is therefore

Vi=E+E+EL e ZE+ Yy (2.10)

In words, the random walk is essentially a simple sum of all the white noise
realizations up to the current time. The AR representation provides an al-
ternate way to look at the random walk. It is the value of the time series one
time step ago plus the white noise realization at the current time step. The
white noise realization at the current time step in the case of the random
walk is known as the innovation. Figure 2.4 is a picture of the random walk
generated using the white noise series in Figure 2.1.

Let us now begin to examine some properties of the random walk. What
do we expect the variance of the random walk to be at time #? Applying the
formulas from the appendix in Chapter 1 on the MA(e) (infinity) represen-
tation of the random walk, along with the fact that white noise drawings are
uncorrelated, we have

var(y,) = var(e,) + var(e,_, ) + var(e,_, ) + - + var(g,)  (2.11)

Since these random white noise drawings all have the same variance, the
variance of the random walk at any time ¢ is clearly

Var(yt) =t Var(st) (2.12)

Note that in this case the variance depends on the time instant, and it in-
creases linearly with time #. (If the variance increases linearly with #, then the
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FIGURE 2.4 Random Walk Series.

standard deviation increases linearly with «ﬁ ). In this case, unlike all the
previous cases, the variance increases monotonically with time; that is, the
values are capable of moving to extremes with the passage of time. Also, the
statistical parameters like the unconditional mean and variance are not time
invariant, or stationary. The series is therefore called a nonstationary time
series.

The correlation between a value and its immediate lagging value is 1.
Our prediction for the next time step would then be a value with mean
equal to the current time step; that is, yfmd = v, ;. The variance, of course,
is the variance of the white noise realizations. As a matter of fact, our pre-
diction for any number of time steps would be a distribution whose mean is
the current value of the series. However, because the variance increases lin-
early with time, the error in our prediction progressively increases with the
number of time steps.

Of the different time series reviewed so far, the random walk is the only
series in which the prediction of the mean value for the next time step is the
current value. Such series where the expected value at the next time step is
the value at the current time step are known as martingales. The random
walk qualifies as a martingale.

The random walk also exhibits a strong trending behavior. Let us ex-
amine that statement by contrasting the behavior of the random walk with
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other time series. The other time series tend to oscillate about the mean of
the series; that is, they exhibit mean reversion. To see what we mean, we
suggest that the reader examine the time series plots and see how many
times the different time series cross the mean (zero in this case). It is easy
to see that the random walk has the least number of zero crossings. Even
though the increments to the series at each time instance have equal odds of
being positive or negative, it is not uncommon for the random walk series to
stay positive (or negative) during the entire time.

FORECASTING

Having discussed the stochastic time series models, let us now direct our at-
tention to the problem of forecasting. The classical forecasting problem may
be stated as follows: We are given historical time series data with values up
to the current time. We are required to predict the value of the next time step
value as closely as possible. In the stochastic time series context, this means
that we first identify the ARMA model that is most likely to have resulted in
the data set and then use the estimated parameters of the model to forecast
the next value of the time series.

Let us now formally lay down the steps involved in forecasting prob-
lems involving stochastic time series. The solution method is best described
as a three-step process. The first step involves transforming the time series
such that it is amenable to analysis. We call this the preprocessing step. The
data are then analyzed for patterns that may clue us in on the dynamics of
the time series. This means that we identify the ARMA model that is likely
to have resulted in the data. This is the analysis step. Finally, we make our
prediction in the prediction step. We now discuss each of the three steps in
detail.

Preprocessing involves dealing with pesky issues like checking for miss-
ing values, weeding out bad data, eliminating outliers, and so forth. It may
also involve transforming the time series to prepare it for analysis. A simple
transformation may be to subtract the mean of the series. Other methods
may involve creating a new time series by a functional transformation. The
application of the logarithmic function to values of the given series prior to
analysis is a good example. In the context of ARMA models, an important
transformation technique that is frequently used is known as differencing. It
is a process by which a new series is constructed by taking the difference be-
tween two consecutive values in the given series. Let us discuss the motiva-
tion for doing that. The ARMA model based forecasting is typically focused
on the stationary time series. If we are given a series that is deemed nonsta-
tionary, differencing helps transform the nonstationary series into a station-
ary series. The output from the differencing operation may be viewed as the
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series of increments to the current value. Thus, analyzing the differenced
output amounts to studying the changes in the values as opposed to the val-
ues themselves.

The next step is the analysis step. It involves identifying the ARMA
model used to generate the given time series data. An ARMA model is com-
pletely identified when we are given the white noise series and the rule to
generate the time series from the white noise realizations. Sometimes, the
white noise series is implicit. The estimated ARMA parameters are, how-
ever, stated explicitly. But why should we try to fit an ARMA model to a
given data set? The answer is simply that ARMA models provide an empir-
ical explanation for the data without concerning themselves with theoretical
justifications. This makes them readily applicable to a variety of situations.
Also, the fact that ARMA models are empirical is not necessarily a bad
thing, as insights from the model fitting exercise can be later used to con-
struct a plausible theory.

Once the underlying ARMA model is identified, we can proceed to the
prediction step. We use the model parameters to predict the next value in the
series. This completes the forecasting exercise. As seen earlier in our discus-
sion of the ARMA model, the prediction of the next time step value is rather
straightforward once the model is identified. Therefore, insofar as forecast-
ing is concerned, identifying the correct model is key to obtaining a good
forecast. Not surprisingly, a good portion of the field of time series analysis
is focused on model identification.

GOODNESS OF FIT VERSUS BIAS

We noted that identifying the right model is key to obtaining a good fore-
cast. There are quite a few software packages* that estimate parameter val-
ues for ARMA models. While they are based on a variety of approaches, the
basic underlying theme in all of them remains the same; that is, the goal to
find the most appropriate ARMA model. Note the use of the term most ap-
propriate. Let us focus on what it actually means.

Intuitively, a model may be deemed appropriate based on the accuracy
with which it is able to account for the given data set. Let us call the num-
ber that quantifies this accuracy the “goodness of fit” measure. An example
of the goodness of fit measure is the least squares criterion, which is simply
the sum of squares of the prediction error. Prediction error is defined as
the difference between the actual observation and the value predicted by the
model. The idea then is to find a model that minimizes the least squares

4Eviews, S-Plus, and SAS are some software packages that deal with time series mod-
eling and forecasting.
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criterion (sum of squared errors) for the given data. Another example of the
goodness of fit measure is the maximum likelihood criterion. This is a num-
ber representative of the probability that the given data set was produced
by a particular set of parameter values. The idea here is to find the parame-
ters that maximize the probability, or the maximum likelihood criterion.
Thus, the goodness of fit measure helps identify the best model for the given
data set.

Of course, the preceding statement is not without caveats. Let us say
that we are required to choose the best four-parameter model fitting the
data. The goodness of fit criterion would do a wonderful job in helping us
achieve that. It is, however, very likely that the best five-parameter model
would have a better goodness of fit score. As a matter of fact, we can in all
likelihood keep improving our goodness of fit score by increasing the num-
ber of explanatory variables. Therefore, using the goodness of fit score with-
out reservation amounts to advocating the philosophy of the more the
merrier for explanatory variables.

Is that necessarily a good thing? What happens when we apply the
model to out-of-sample data? Will we get the same level of accuracy? To see
the logic more clearly, let us discuss an extreme case where we fit 100 data
points with a 100th-order polynomial (100 explanatory variables). With
that, we can get an exact fit to the data and the best possible goodness of fit
score ever. However, as a working model for prediction, it is probably not
much use to us. Increasing the parameters indefinitely may result in a model
that fits the current data set but performs poorly when used outside the cur-
rent sample. Restating, we could say that our model with a large number of
explanatory variables is hopelessly biased to the current data set. So, here is
our dilemma: We can improve the goodness of fit by increasing the number
of explanatory variables and run the risk of bias, or we can use few ex-
planatory variables and possibly miss further reduction in forecast error.
The question at this point is, “How do I know the point at which I have a
reasonable goodness of fit, and at the same time know that T am not overly
biased to the current data set?” The resolution of this forms the topic of dis-
cussion in the following section.

MODEL CHOICE

The model choice process attempts to achieve a trade-off between goodness
of fit and bias. In order to decide whether to increase the number of ex-
planatory variables, we pose the question, “Am I getting sufficient bang for
the buck in terms of fit error reduction for the addition of the new explana-
tory variable?” If I am, then let us go with the additional variable; otherwise,
we stick with the model at hand.
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The Akaike information criterion (AIC) quantifies the preceding trade-
off argument.’ In general, every model with k parameters is associated with
an AIC number as follows:

no 2
AIC = n log(z e_,.] + 2k (2.13)
n

i=1

where ¢; is the forecast error on the ith data point. Here, the first term rep-
resents the goodness of fit, and the second term is the bias. For every addi-
tional variable, the second term increases by a value of 2. However, when a
variable is added, we expect the fit to improve and the variance of the fore-
cast error to go down. If this reduction is more than 2, then the AIC value
for the model with an additional variable will be lower, and we will have got
our proverbial bang for the buck. If the value is higher, then the trade-off is
not worth it, and we stick with the current model.

The rationale for the AIC formula and the quantitative value used for
trade-off has a strong foundation in information theory and is far from
arbitrary. Further follow-up material on this can be found in the reference
section.

Example

The application of the AIC idea is illustrated in the following exercise. An
AR(3) time series that was generated is shown in Figure 2.5a. AR models of
various orders were fit to it and the AIC values calculated. The result is plot-
ted in Figure 2.5b. The x-axis denotes the number of parameters in the AR
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FIGURE 2.5A AR(3) Series.

SAIC is but one of many cost functions. The Schwartz information criterion (SIC)
and the Bayesian information criterion (BIC) are also popular.
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BeFORE AIC: THE STATISTICIAN'S TORTURE

RAINING ON THE PARADE

If you ever happen to make a presentation involving data analysis,
here is a situation that you might encounter. After all the preparation
involving umpteen coffees, and bleary-eyed but vigorous mouse click-
ing at statistical packages as you present your forecasting model, there
is a wise guy in the audience who quips, “I am sure I can fit any model
to the degree of accuracy I want by adding a lot of variables. I do not
see how your model is any good.” While you would like to stare him
down until he sulks and quietly leaves the room, more often than not
the wise guy happens to be the boss. Unfortunately for you, more often
than not he is also correct.

The key, however, is to be one up on the wise guy! Based on the
preceding discussion you can now wax eloquently about the tug of war
between goodness of fit and the evil of bias and how you have metic-
ulously taken into account the effect of adding multiple variables in the
forecasting model. Dazzle everyone with your slides on AIC calcula-
tions and top it off with an out-of-sample test.

If your presentation is close to end of fiscal year, you can chuckle
to yourself about the bump in bonus you are likely to see due to this.
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AFTER AIC: THE STATISTICIANS CoMPROMISE
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FIGURE 2.5B AIC Plot.

model and the y-axis is the AIC value. Note that the AIC value registers a
minimum at four parameters. This is three AR parameters and a constant
value for the mean of the series. Using more parameters will result in a bet-
ter goodness of fit but will not help in forecasting. In some instances, it might
actually hurt the forecasting results.
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MODELING STOCK PRICES

The model that is most commonly assumed for stock price movement is
called a log-normal process; that is, the logarithm of the stock price is as-
sumed to exhibit a random walk. Let us discuss the implications of such an
assumption.

First, this says that the logarithm of the stock price is a martingale. This
is to say that the observed price of a stock at the next time period is roughly
equal to the price at the current time, give or take a few. That is definitely
reasonable.

Next, let us examine the resulting time series when we difference the
random walk. Differencing the random walk yields the increment to the ran-
dom walk at each time step. The set of increments by definition are drawings
from a normal distribution. But this is exactly how white noise is defined.
Thus, differencing a random walk results in a white noise series. Also, bear
in mind that the differencing output of the log-normal process (the difference
in the logarithm of the prices) can be interpreted as the stock return.® Putting
the two together, the implication of the log-normal assumption is that stock
returns are essentially a white noise process. Let us look at the plausibility of
this implication. Figure 2.6a is a plot of the logarithm of the price of GE
(General Electric) over a 100-day period. The series is then differenced,
yielding the differenced plot in Figure 2.6b. To quickly check the nature of
differenced values (returns), we urge the reader to examine Figure 2.6d. It is
a O-O plot of the returns versus the normal distribution. The closer the
points are to the straight line, the more the actual distribution behaves like
a normal distribution. The autocorrelation plot of the returns is depicted in
Figure 2.6¢. Note that the correlation values are negligible, signifying that an
assumption of white noise for the differenced series in a random walk is def-
initely plausible.

Now, let us discuss the issues surrounding predictability in a random
walk. We know that for a random walk the predicted value at the next time
step is the value at the current time step. That is all fine, but the purpose of
prediction is to make profits, and profits are made by correctly predicting
the increment to the random walk in the next time period. However, because
the random walk is a martingale, the mean value of the predicted increment
is zero. The actual realized value of the increment is anybody’s guess. Does
the situation improve when we try to predict values two time steps ahead?
Not very much really. The mean value of the predicted increment is still

12

%. Hence the difference in the logarithm may be construed
1

6 log(pz) - IOg(Pl) =

to be the return.
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zero. If anything, the variance of the normal distribution two time steps
away increases, and the plausible range of values that the increment can as-
sume actually increases, further increasing our prediction error. Therefore,
knowing the past history of a random walk is not much help in predicting
the forward-looking increments.

The situation is very different for stationary processes. Armed with the
knowledge that stationary processes are mean reverting, one can predict the
increment to be greater than or equal to the difference between the current
value and the mean. The prediction is guaranteed to hold true at some point
in the future realizations of the time series.

However, stock prices are modeled as a log-normal process, and that is
definitely not stationary. So, where does that leave us in terms of making
profits? Definitely not anywhere close to making money. The reader is prob-
ably wondering what the point of this whole chapter is. If the logarithm of
stock prices is assumed to be random walk, there is no need to go atitin a
roundabout way. Just say it is futile trying to predict stock returns and leave
it at that. But all hope is not lost. We shall see in the later chapters that it
may be possible to construct portfolios whose time series are actually sta-
tionary, and the returns for those portfolios are indeed predictable. Let us
stop here with this teaser.

SUMMARY

m A time series is constructed by periodically drawing samples from prob-
ability distributions that vary with time.

m The white noise process is the most elementary form of time series and
is generated by drawing samples from a fixed distribution at every time
instance.

m ARMA time series are generated using fixed linear combinations of
white noise realizations.

m Time series forecasting for ARMA processes involves deciphering the
linear combination and the white noise sequence used to generate the
given data and using it to predict the future values.

® A random walk process is the time series where the current value is a
simple sum of all the white noise realizations up to the present time.

m A random walk is a nonstationary time series.

m Nonstationary time series are usually transformed to stationary time se-
ries using differencing.

m The logarithm of the stock price series is usually modeled as a random
walk.
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APPENDIX

Lag 1 Correlation in a MA(1) Series

The variance of y, can be calculated using the preceding formulas as

Var(yt) = Var(et + ﬁet_l) = var(et) + B var(et_]) + 2B cov(et,SH) =

= (1+ ) var(z,
core(yy3,4) = Eyyed BE(e2,) i
varly, Jvar(y) - Jvar(y,)var(y,.,)
_Bvale) B

var(yt) B 1+ B?

Therefore, unlike the white noise series, this series has a nontrivial correla-
tion structure.

Lag 1 Correlation in a AR(1) Series
The variance at each time instant is given as
var(yt) = E(yf) = (1 +of +at+af + ) var(et)

If o > 1, the series explodes and the variance becomes infinity. However,
when o > 1, the variance can be calculated as the sum of an infinite geo-
metric series and written as

The covariance is given as

COV(ytSyt—l) = E[ytyt,l] = E[(OcyH + et)yH] = ocvar(yt)



Time Series 35

The correlation is therefore

~ cOV()’ta yt—l) _ avar(yt) =
Corr(y,, yt—l) = Var(y,) - Vaf(%) =

Conditions under Which the Maximum Likelihood
Is Equivalent to Minimizing Sum of Squares

The substitution of the logarithm of the likelihood criterion with the sum of
the squared errors hinges on a key assumption. The assumption is that the
errors follow a normal distribution with a zero mean. Based on this as-
sumption, every error value may be assigned a probability of occurrence.

P(e,-) _ 1 (et. /G)2

J?”CXP - 2

We now make another assumption that the errors are independent of each
other. Then the probability (likelihood) of obtaining the following error se-
quence is the product of these probabilities.

plerror) = T fe)

i=1

Now, taking the logarithm of the above equation on both sides we have an
expression for logarithm of the likelihood.

N

log(likelihood) = i log[p(el.)] = % log(Zn) - 2% Y e?
i=1 o

i=1

Let us examine our motivation for doing that. If we arrange a sequence of
numbers in ascending or descending order and take their logarithms in se-
quence, the logarithms are guaranteed to be in ascending or descending
order, as the case may be. We might say that transforming a set of numbers
into their logarithms preserves their ranks. Therefore, maximizing the log-
likelihood is equivalent to maximizing the likelihood. We shall see in the fol-
lowing discussion that the log-likelihood can be simpler to deal with.
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Examining the expression for logarithm of the likelihood, we see that
N

the only variable term is —2 e’ . Note that this is the sum of squared errors

multiplied by the negative éigln. Thus, maximizing the logarithm of the like-
lihood is the same as minimizing the sum of squared errors. Therefore, in sit-
uations where we make the assumptions as discussed, then the sum of
squares multiplied by a negative sign may be used as a proxy for the max-
imum likelihood.
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INTRODUCTION

Factor models are models that are used to explain the risk/return character-
istics of assets. It is actually a rather loose term that serves to describe a wide
variety of models. However, all the models share the common characteristic
that they may be viewed as extensions to the CAPM model. The premise of
the CAPM model is that the returns of assets are explicable almost com-
pletely by the behavior of the overall market. Each asset is sensitive to the
market in its own characteristic way, and this sensitivity is termed beta.
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Thus in the CAPM model there is a single explanatory factor and exposure
value; namely, the market return and beta. A natural extension to this idea
would then be to have multiple explanatory factors and exposure/sensitivity
values. For instance, it is possible to construe that the return on a stock de-
pends on the sector of the economy in which it operates, the market capi-
talization, and a good number of other explanatory factors that can be
drawn from the available repertoire of market variables. In this context of
multiple explanatory factors, the return of a stock would then be an aggre-
gate of the return contributions of the factors scaled according to the sensi-
tivity/factor exposure. Thus, the return of a stock in a factor model is
explained by the return contributions of the various factors.

Depending on the type of the factors used, factor models may be loosely
categorized into three main groups: statistical factor models, macro-
economic factor models, and fundamental factor models. The factors in a
statistical factor model are what we shall call eigen portfolios. They are a
set of building-block portfolios with the property that their returns are un-
correlated with each other. Also, the return on any portfolio can be ex-
pressed as a linear combination of the returns on the eigen portfolios.
However, the eigen portfolios are actually statistical artifacts deduced from
data, and interpreting the results is a task that is easier said than done. So,
when looking to answer questions from a valuation or a risk control stand-
point, one would have to examine the returns closely to answer the ques-
tion: What is the predominant theme or themes that characterize the eigen
portfolio? It is this problem of interpretation that makes the statistical fac-
tor models more of a black box and hard to use. Not surprisingly, the pref-
erence for practitioners has been models that allow them to specify the
factors (macroeconomic or fundamental) allowing for a more intuitive ex-
planation for the factor returns. These models are different from the statis-
tical factor model in that the role of the eigen portfolios is actually assumed
by some macroeconomic or fundamental variable that can be observed
directly.

The macroeconomic factor models are constructed using historical stock
returns and observable macroeconomic variables. An example of propri-
etary macroeconomic factor models is the Burmeister, Ibbotson, Roll, and
Ross (BIRR) model. The factors or attributes in such models typically in-
clude short-term bond yield changes, long-term bond yield changes, dollar
value versus other currencies, investor confidence, and changes in long-run
economic growth. In contrast to the macroeconomic model, the fundamen-
tal factor model uses company and industry attributes and market data as
raw descriptors to explain the returns. Examples of commercially available
models of this type are the BARRA and Wilshire Atlas models. The inputs
to these models are typically industry factors comprising the industries in
which the firms operate, and other fundamental factors like price/earnings
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ratio, the price/book ratio, attributes relating to the capital structure of the
firm like debt/equity ratios, and the like.

Even though there exists a wide variety of models, it may not be neces-
sary to discuss each of the models on an individual basis. The theoretical un-
derpinning for the models is provided by arbitrage pricing theory (APT).
Thus, by treating the factors used as inputs in an abstract way and dis-
cussing arbitrage pricing theory, we can cover a lot of ground on the behav-
ior and use of these different models.

ARBITRAGE PRICING THEORY

Arbitrage pricing theory was originally proposed by Stephen A. Ross in 1976.
Unlike the preceding introduction, in which APT was presented as an exten-
sion of CAPM, the original proposal by Ross is actually embedded in an ar-
bitrage argument and is appropriately reflected in the name of the theory.
In this chapter, however, we will avoid an elaborate discussion on the foun-
dations of APT. For that, we direct the reader to the material listed in the ref-
erences. Instead, we will provide simple definitions and focus on a few
applications to familiarize the reader with the concepts and their application.

In the multifactor framework, an asset is fully characterized by its fac-
tor exposure/sensitivity profile. The contribution to the overall asset return
due to each factor is commensurate with the exposure/sensitivity of the asset
to the different factors. The total return is the aggregate of the contributions.
Therefore, if APT was to be summed up in one sentence, it would probably
be something like this: “Give me the risk factor profile of a security, and I
will tell you all about its risk and return characteristics.” Let us now describe
some terminology and notation surrounding APT.

We will first start with risk factor exposures. Keeping with the idea of
APT being an extension of the CAPM model, let us denote the factor expo-
sures as (B, B,, B3+ ﬁk) If (rl,rz,r3,..., rk) denote the return contribu-
tions of each factor, then the return on the stock is given as

r =By + Bary + Bars +eet Brrp + 7, (3.1)

where 7, is the idiosyncratic return or specific return on the stock that is not
explicable by the factors in the model. One of the key assumptions of APT
is that the specific return for a given stock is uncorrelated with both the fac-
tor returns and the specific returns of any other stock.

Let us now focus on the evaluation of risk. The risk in a stock is meas-
ured as the variance of the return. The variance of return may in some ways
be likened to the range of possible values that the return can assume. A small
variance is indicative of a narrow range and therefore lower risk, whereas a
large variance or wide range is indicative of higher uncertainty in the returns
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and therefore greater risk. This approach to measuring risk as the second
moment of the return distributions was originally proposed by Markowitz,
in the context of portfolio optimization. The Markowitz approach to port-
folio design is also sometimes referred to as mean-variance optimization
and was awarded the Nobel Prize in economics. Today it has become com-
mon practice to use the variance of the return as a measure of risk. We will
also keep with this practice and illustrate how risk/variance of return is cal-
culated in the APT framework. We do this by way of an example. Let us
consider an APT model with two factors.
The returns on the stock in the two factor model case is given as

r= ﬁlrl + ﬁz?‘z +7, (3.2)

The risk is then measured as the variance of this return. To evaluate it, let us
first expand the squared return of the stock using the algebraic identity

(a+b+c) =a® +b> +2ab + 2ac + 2bc + ¢ (3.3)

We then have
2
r? = 121'12 + 22722 + 2B,B,nry + 2By, + 2B, 151, + 1) (3.4)

Applying expectations on both sides and using the formulas in the appendix
in the first chapter, we have

Var(r) =B Var(rl) +B; Var(rz) + 28,8, cov(rl, rz) + var(re) (3.5)

Note that since 7, is uncorrelated with both 7, and r,, the terms with their
products do not feature on the value for the variance. Also, Equation 3.5 can
be written in matrix form as follows:

Var(rl) cov(r1 , rz) B,

cov(r1 , rz) Var(rz) B,

Var(r) = [ﬁ1 /32] + Var(re) (3.6)

Notice the structure of the equation. We have the factor exposure pro-
file and its transpose on either side of a square matrix. This square matrix is
structured such that it has the variance of the factor returns on its diagonal
and the covariance as the off-diagonal elements. It is also commonly referred
to as the covariance matrix of factor returns and plays a central role in the
calculation of the risk of the security. We can simplify the notation for risk
even further:
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var(r) = eVe® + var(r,) (3.7)

where V is the covariance matrix and e is the factor exposure vector. Also
note from Equation 3.7 that the variance of the return is expressed as a sim-
ple sum of two terms. The first term is the variance due to the common fac-
tors, and the second term is the idiosyncratic/specific variance. Also, given
that the standard deviation is the square root of variance, Equation 3.7 may
also be written as

O-rzet = O-czf + O-szpeciﬁc (38)
One can easily remember the formula by drawing parallels between this and
the Pythagorean theorem from high school geometry. The standard devia-
tions may be represented as the sides of a right-angled triangle as shown in
Figure 3.1. In practice, it turns out that the specific variance is the smaller
component of the total variance, and a significant portion of the total vari-
ance is explained by the common factor variance. Note that key to the eval-
uation of the common factor variance is the knowledge of the covariance
matrix of factor returns.

So, how is the covariance matrix calculated in practice? If we have a
sample of past historic factor returns, then it is a simple matter of using the
formulas in the appendix of the first chapter to evaluate each of the entries
of the covariance matrix. The question therefore now becomes, how do we
get a sample of past historic factor returns? To do this, we first write out
the linear equations for the return of each stock with known stock returns,
treating the factor returns as unknown variables. Next, we solve this system
of equations to obtain an estimate of the factor and specific returns. We
now have the past factor returns that may be used to estimate the covariance
matrix.

In other words, the covariance matrix can be deduced from the factor
returns. The converse of this statement is also true. Knowledge of the

Ototal

O-spewﬁc

O common factor

FIGURE 3.1 The Risk Diagram.
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covariance matrix with the factor exposures and specific variances is suffi-
cient for us to deduce the vector of expected factor returns. The reader is re-
ferred to the book by Grinold and Kahn on how that is done. Consequently,
knowledge of the factor covariance matrix and the specific variances is suf-
ficient in order to specify an APT model completely. With that said, let us
formally list the parameters that are typically provided in the specification of
a factor model. They are as follows:

m Factor Exposure Matrix. This is the matrix of exposure/sensitivity fac-
tors. If there are N stocks in our universe and k factors in the model, we
can construct a N X k matrix with the exposures for each stock in a row.
Let us denote this matrix as X.

m Factor Covariance Matrix. This is denoted as V.

m Specific Variance Matrix. This is the specific variance for each of the N
stocks assembled in an N x N matrix with the specific variances on the
diagonal. Because the specific variances are assumed to be uncorrelated,
the nondiagonal elements are zero. This matrix is denoted as A.

Of the three parameters, the factor covariance matrix is by far the most in-

teresting. We will therefore discuss some of the properties of the covariance
matrix in its own section.

THE COVARIANCE MATRIX

The factor covariance matrix plays a key role in the determination of the
risk. It is in fact a square matrix. In a model with k factors, the dimensions
of the covariance matrix is k& x k. The diagonal elements form the variance
of the individual factors, and the nondiagonal elements are the covariances
and may have nonzero values. A nonzero covariance implies that the returns
of two explanatory factors share some correlation. For example, consider
the situation where market capitalization and the leverage of the firm are
used as explanatory variables. It is not uncommon within an industry to find
that the small cap names have a high amount of leverage. If we assume that
the small cap names outperformed the overall market, then we can expect to
see a nonzero correlation between the returns attributed to the leverage and
capitalization factors. Hence, it is possible to have nonzero entries in the off-
diagonal elements of the covariance matrix.

The covariance matrix is also symmetric. This is self-evident because
the (i,7)th element and the (j,i)th element contain the entry for the covari-
ance between the ith factor and the jth factor and are therefore the same.
Additionally, the covariance matrix is also positive definite. This means
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that the matrix has a square root; that is, V = B? for some B, where V, B are
matrices.

Consider the situation where we are required to evaluate the covariance
between the returns of securities A and B. Let e, and ey be the factor expo-
sure vectors for the two stocks. Adapting the formula for variance previously
discussed, we have the covariance as

cov(ry,ry) = eAVeg (3.9)

We can therefore calculate the covariance between all the securities in our
universe and make them entries in a covariance matrix. This matrix would
come in handy to evaluate correlations between securities. Note that if the
total universe of securities is about 5000 stocks, then the covariance matrix
for the list is a square matrix with 25 million entries. Calculating the vari-
ance and covariance of each stock pair individually by sampling past data
can be a tedious endeavor. Armed with the factor exposure vectors and the
factor covariance matrix, the covariance and correlations between securities
may be calculated readily. Thus, the use of the factor covariance matrix re-
duces the complexity of evaluating the correlations between securities in a
dramatic way. Even so, the full and complete covariance matrix for all the
stocks in the universe is given by

CovMatrix = XVXT (3.10)

It is also prudent to be aware of certain potential issues when working with
the factor covariance matrix. For example, it is not uncommon in invest-
ment circles to hear someone say, “But you don’t want to be mining the co-
variance matrix!” Let us examine what they mean by that. Mining here
refers to data mining, albeit with a negative connotation. The word is used
synonymously with bias, indicating that since the covariance matrix is de-
duced from historical data, the values are a reflection of the past and may
not hold going forward. While the empirical observation has been that the
covariance matrices are relatively stable, it is still subject to the fact that the
values used in the covariance matrix may not be exact, and it may be useful
to do some sensitivity analysis on applications where we use the covariance
matrix. It is probably worthwhile to also bear in mind that along with the
covariance matrix, the specific variance is also backward looking and is
subject to the “mining syndrome.”

Another issue that is commonly cited with regard to the covariance ma-
trix and its use is the underlying assumption of the Gaussian distribution for
the computed variance. The so-called fat tails that are ubiquitous in the vari-
ance of returns in financial time series are not accounted for by the model.





